

Code No. 3086

FACULTY OF ENGINEERING

B.E. 3/4 (Prod.) II-Semester (Supplementary) Examination, December 2010 TURBO MACHINERY

Tin	ne: Three Hours] [Maximum Marks	: 75					
	Answer ALL questions from Part A. Answer any FIVE questions from Part B.						
	PART—A (Marks: 25)						
1.	Write the losses in turbomachines.	2					
2.	Explain briefly cavitation.	3					
3.	Minimum starting speed of centrifugal pump.	3					
4.	Explain the term Degree of Reaction.	2					
5.	Explain Rankine Cycle.	2					
6.	Explain Pressure compounding of steam turbines.						
7.	Define Isentropic efficiency of nozzle.	2					
8.	Explain Delavel steam turbine.	2					
9.	Write the assumptions made in the derivation of Bernouli's equation.						
10.							
	PART—B (Marks: 50)						
11.	Derive the equation of motion for an ideal flow (Euler's equation).						
	The mean bucket speed of Pelton turbine is 15 m/s. The rate of flow of water supplied by the jet under a head of 4.2 m is 1 m ³ /s. If the jet is deflected by the buckets at an angle 165°, find the power and efficiency of the turbine (take $C_V = 0.985$).						
13.	Air at a temperature of 27°C flows into a centrifugal compressor running at 20,000 The following data are given:	rpm.					
	Slip factor — 0.80						
	Power input factor — 1						
	Isentropic efficiency — 80%						
	Outer dia of blade tip — 0.5 m						
	Assuming the absolute velocity of air entering and leaving the compressor are safind:	ame,					
	(a) Static temperature rise of air passing through compressor						
	(b) The static pressure ratio.	10					
POU	—14990	ontd.					

14.	(a)	Explain the terms "over expand through nozzle.	ing" and "under expa	nding" as applied to a flu	id flov
	(b)	Is the thermal efficiency of a I between same temperature limit	Rankine cycle equal to	o that of Carnot cycle op explain the reasons for the	erating same
					5
15.	(a)	What do you understand by clo	sed cycle and open c	ycle gas turbine plants?	3
	(b)	Explain with neat sketch working and reheating.	ng of gas turbine plan	t with intercooling, regen	eration 7
16.	(a)	Compare Impulse turbine and R	Reaction turbine.		6
	(b)	Draw the Inlet and Outlet velocand forward curved blade.		tward curved blade, radia	
	velo	gent nozzle having throat area 3 city is 800 m/s. The flow from rmine exit area of nozzle and o	nozzle entrance to th	roat is reversible and adi	nd exit iabatic. 10
		*			
		The Armed States			
				And the second	
		er yarov i garijava i i		かばか WMA (Text)	
POH	_1499(0	~		
4 00-	ニュサフクリ	v	ha :		600

2

600