Code No. : 6388/N

FACULTY OF ENGINEERING

B.E. IV/IV (M/P) I SEMESTER (New) (Main) Examination, Nov./Dec., 2009 FINITE ELEMENT ANALYSIS

Time: 3 Hours [Max. Marks: 75

Note: Answer all questions from Part – A. Answer any five questions from

Part - B.

	PART – A (25 Mar)	ks)
1.	State the advantages and limitations of finite element method.	2
2.	Distinguish between plane stress and plane strain condition.	2
3.	Explain the procedure for calculation of stress in a bar element.	2
4.	How do thermal stresses occur? Explain with examples.	3
5.	Explain the principle of virtual displacement and the principle of minimum potential energy for finite element problem formulation.	3
6.	Explain the need for applying numerical integration for evaluation of coefficients of the stiffness matrix.	3
7.	Obtain the shape functions in area coordinates for a linear triangle.	2
8.	Explain the finite element problem formulation using Rayleigh-Ritz method.	3
9.	Explain the finite element problem formulation by Galerkin Weighted Residual method.	3
10.	Write the consistent mass matrix for a 2-node bar element.	2

PART - B

(50 Marks)

11. Write the load vector, stiffness matrix and d.o.f. vector for the suspended tapered bar. Consider two elements. (Fig. 1)

$$E = 200 \text{ GPa}, P = 77500 \text{ N/m}^3$$

12. Find the displacement at node 2 and the support reactions for the truss shown in fig. 2. $E = 20 \times 10^6 \text{ N/cm}^2$.

13. Obtain the deflection at node 2 for the beam shown in fig. 3. $EI = 9000 \text{ kN m}^2$.

14. A quadrilateral element shown in fig. 4 is subjected to a distributed load normal to the edge 2-3. Obtain the nodal loads 2-3. Thickness: 10 mm.

Fig. 4

15. Determine the temperatures at nodes 2 and 3 of the composite wall (fig. 5). Wall temperature $T_1 = 100$ °C. Outside air temperature is 50 °C with convection coefficient h = 10 W/m² °C.

16. A rectangular fin shown in fig. 6 is attached to a surface at 100 °C. The lateral surface and the top are exposed to ambient temperature of 20 °C. Consider two elements. Compute the temperatures at the nodes.

17. Obtain the eigen values and eigen vectors for the bar fixed at one end due to axial vibrations.