(3)

FACULTY OF ENGINEERING

B.E. 4/4 (EEE) I - Semester (Suppl.) Examination, May / June 2018

Subject: Electric Drives & static Control

Time: 3 Hours Max. Marks: 75

first quadrant extending it to second and fourth quadrants.

Note: Answer all questions from Par A & any five questions from Part B.

PART-A (25 Marks)

1. Draw speed-torque characteristics of dc series motor with shunted armature connection in

2.	Explain briefly steady-state stability of equilibrium point by considering any one type	ot	
	speed-torque characteristics of load torque and motor torque.	(3)	
3.	Discuss how counter current braking is achieved in a separately excited dc motor.	(3)	
4.	Explain why a 3-phase induction motor draws high current at the instant of dc dynam	nic	
	braking?	(2)	
5.	A 300 V, 100 A, separately excited dc motor operating at 600 rpm has an armatu	٠,	
	resistance of 0.25 Ωand controlled by a chopper with a chopping frequency of 1 kH		
	Calculate the duty ratio, if the motor is running at 500 rpm and rated torque.	(3)	
6	A 3-phase, 50 Hz, 1440 rpm induction motor is under braking using plugging. Neglecting	` '	
0.	stator resistance and total reactance, find the impedance of the motor during braking, w	_	
	respect to rated impedance.	(2)	
7	Draw the circuit diagram of a Type E chopper fed dc motor.	(3)	
	Draw Voltage to frequency plot of 3-phase induction motor for constant torque a	٠,	
0.	constant power operations from near zero frequency to greater than rated frequency.	(2)	
a	Mention industrial applications of Switched reluctance motor.	(2)	
	Draw speed-torque characteristics of (i) 3-phase synchronous motor and (ii) BLDC motor		
10.	Diaw speed-torque characteristics of (i) 3-phase synchronous motor and (ii) blbc motor		
Part - B (50 Marks)			
1 att - D (30 Marks)			
11.	(a). Explain briefly four-quadrant operation of a drive showing directions of speed a	nd	
	motor & load torques with an example.	(6)	
	motor a load torquod with an oxampio.	(0)	
	(b). Derive the condition for steady-state stability of a drive system.	(4)	
	(2). Don't a tile containen for clodaly clate clabinly of a anive cyclemi	(.)	
12	(a). Obtain an expression for accelerating time of a 3-φ induction motor up to its rat	ed	
	speed.	(4)	
		١.,	

(b). A 440 V, 50 Hz, 4 pole, 1440 rpm, 3-\phi star connected induction motor has the

impedance per phase = $(0.3 + j 1.0) \Omega$. Determine the initial braking torque soon after

following data. Stator impedance per phase = $(0.5 + j1.2) \Omega$. Standstill Rotor

(i) plugging and (ii) dc dynamic braking.

(6)

- 13. (a).Draw and explain the operation of a Type B chopper fed separately excited dc motor drive with a neat circuit diagram and show input and output voltages and currents, assuming load current is continuous.
 (6)
 - (b). A separately excited dc motor has a constant load torque of 60 Nm. The motor is driven by a 1- ϕ full-wave converter connected to a 1- ϕ , 240 V ac supply. The motor constant is 2.5 V/rad./sec.and the armature resistance is 2 Ω . Calculate the firing angle for the motor to operate at 400 rpm, assuming the armature current is continuous. (4)
- 14. (a). Draw and explain circulating current mode of operation a dual converter fed dc drive.
 - (b). Describe inner current loop and outer speed loop operation of a separately excite dc motor with a neat block diagram. (5)
- 15. (a). With neat circuit diagram, explain how V/f control can be achieved using VSI fed 3-phase induction motor. (5)
 - (b). What is slip-power recovery? Describe how the slip power can be recovered using a static Krammer drive. (5)
- 16. (a) What are the functional similarities and dissimilarities between 3-φ synchronous motor and BLDC motor?(5)
 - (b) Explain the variable frequency control of multiple synchronous motors using a neat block diagram. (5)
- 17. Discuss the following.

(10)

- (a) 3-phase Cyclo-converter fed 3-phase induction motor
- (b) Load inertia and load equalization
