FACULTY OF ENGINEERING

B.E. (ECE) VI - Semester (CBCS) (Main) Examination, April / May 2019
 Subject : Digital Communication

Time : 3 hours
Max. Marks: 70

Note: Answer all questions from Part-A. Answer any Five questions from Part-B.

PART - A (20 Marks)
1 State the A-law of compression and expansion.
2 Contrast between DPCM and DM.
3 What is the need for Source coding?
4 Find the maximum entropy of a computer keyboard with 112 keys.
5 What are different types of errors that occur during transmission?
6 Compare linear block codes and convolutional codes.
7 Differentiate between PSK and QPSK.
8 Briefly discuss the steps involved in optimum receiver design.
9 What is Jamming Margin? State its significance.
10 Differentiate between fast and slow frequency hopping.
PART - B (50 Marks)
11 a) Explain the working of a DPCM system with the help of suitable block diagram and necessary pre-requisites. What is the advantage of DPCM over PCM system.
b) A 2 KHz sinusoidal message signal is applied as input to a PCM system with 256 Quantization levels. Find the signal to quantization noise ratio $\left(S N R_{Q}\right)$ in $d B$.

12 a) Illustrate the Huffman source coding procedure for a source that emits ' 6 ' symbols with probabilities given as $0.3,0.2,0.16,0.12,0.12$ and 0.1 . Determine the coding efficiency and redundancy.
b) Derive the expression for channel capacity of Binary symmetric channel.

13 a) Consider a $(7,4)$ linear code whose generator matrix
$G=\left[\begin{array}{lllllll}1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1\end{array}\right]$
i) Find all the code vectors of this code
ii) Find parity check matrix
iii) Find minimum weight and minimum distance of the code
b) Draw the encoder structure of a rate $1 / 2$ convolutional coder $g_{1}=(101)$ and $g_{2}=$ (011). Find the codewood for an input 011. Find the codeword for an input 011. What is the constraint length of this code.
$\begin{array}{ll}14 \text { a) Derive an expression for probability of error for coherent ASK signaling scheme. } & 5 \\ \text { b) With the help of block diagram explain DPSK modulation and demodulation. } & 5 \\ 15 \text { a) Explain the working of Direct sequence spread spectrum system with necessary } & \\ \text { mathematical analysis. } & 5 \\ \text { b) Discuss how FHSS signal is tracked using Early-Late Gate. } & 5\end{array}$5

16 a) Explain the working of a PCM system with neat block diagram.
7
b) Consider an AWGN channel with 4 KHz bandwidth and the noise power spectral density $\left(\mathrm{N}_{0} / 2\right)$ is $10^{-12} \mathrm{~W} / \mathrm{Hz}$. The signal power required at the receiver is 0.1 mW . Calculate the capacity of the channel.

17 Write short note on :
a) Minimum Shift Keying 5
b) PN sequence generation using $\operatorname{LFSR}(1,3)$ and properties

