FACULTY OF ENGINEERING

B.E. 3/4 (ECE) II Semester (Suppl.) Examination, December 2012 Subject: Antennas and Propagation

Time: 3 Hours Max.Marks: 75

Note: Answer all questions from Part A. Answer any Five questions from Part B.

PART – A (25 Marks)

	alte		(2)
			(2)
3.		Iculate the gain of a parabolic reflector antenna which has a diameter of 10 m erating at 10 GHz with an illumination efficiency of 55%.	(3)
4.	•	a microwave link the antenna gains are 40 dB each at 10 GHz frequency.	` '
	If t	he path length is 60 Kms, calculate the transmission path loss.	(3)
		t out the advantages and disadvantages of Lens antennas.	(2)
			(2)
7.		vo isotropic point sources are separated by a distance of $\lambda/4$. The phase difference tween the currents feeding the point sources is -90 degrees. Draw the resulting	
			(3)
			(2)
9.		e components of a time varying electric field are given by	
	\tilde{E}_x	= -A Cos ω t, \tilde{E}_{v} = -B Sin ω t. Determine the polarization of the field.	(3)
10.	Wh	nat is the maximum effective aperture of a microwave antenna which has a	
		·	(3)
		PART – B (50 Marks)	
11.	(a)	Derive expression for the total electric field intensity of a uniform linear array with 'n' number of elements. Derive the conditions for the Broadside and End	<i>(</i> 5)
	(b)	· · · · · · · · · · · · · · · · · · ·	(5) (5)
12.		Briefly describe about the space wave propagation. Show that the strength of the	
		space wave signal at the receiver is $E_R = \frac{88.14 \sqrt{P_t} h_t h_r}{\lambda d^2}$	
		Where P_t is the transmitted power, h_t , h_r are the heights of the transmitting and receiving antennas, ' λ ' is the operating wavelength and 'd' is the distance between the antennas.	10)
13.		Derive expression for the radiation resistance of the Half wave dipole.	10)
14.		Describe the methods of measuring the impedance of an antenna using the Impedance Bridge Method and the Slotted Section Method.	10)
15.		Define the terms Directive Gain, Directivity, Effective length and Effective area of an antenna. Derive the relation between Gain and Max. effective area of an	
			10)
16.		Explain the working principle of Rhombic antenna and Yagi-Uda antenna.	10)
17.		Write short notes on the following: (a) Wide band characteristics of Helical Antenna (b) Principle of pattern multiplication	10)