CODE No. 5102/O http://www.osmaniaonline.com ## **FACULTY OF ENGINEERING** BE 2/4 (ECE) Il Semester (Old) Examination, June -2016. Sub: Pulse, Digital and Switching Circuits. | Time: 3 Hrs. | _ | Max. Marks : 75 | |--------------|---|------------------| | | | max. Marks . / 3 | ## Note: Answer All Questions From Part- A and Any Five Questions from Part-B. PART – 'A' (25 Marks) | 1.
2.
3.
4.
5.
6.
7.
8.
9. | Dra
Exp
Sta
Def
Rea
Dra
Cor | to the clamping Circuit Theorem? It is Clamping Circuit Theorem? It is the circuit of compensating attenuator and explain? It is the circuit of compensating attenuator and explain? It is a voltage to frequency converter works with a neat circuit diagrate a prove DeMorgan's Theorem? It is a prove DeMorgan's Theorem? It is a prove Implicants & essential prime Implicants? It is a prove Implicants & essential prime Implicants? It is a prove Implicant & Truth table of SR, JK and T Flip Flops? It is a prove Implication table? | (3)
(2)
(3)
(m? (3)
(2)
(2)
(3)
(3)
(2) | |--|---|--|---| | | | PART – B (50 Marks) | | | 11. | a) | Why a High Pass RC circuit is called a differentiator? | (3) | | | b) | 1 KHz symmetrical square wave of \pm 10 ν is applied to Low Pass RC circuit having 1 ms time constant. Calculate and plot the output ? circuit. | (7) | | 12. | a) | Design collector coupled mono stable multi vibrator using a NPN transistor. Neglect I_{CBO} and the Junction voltages. Assume $h_{fE(min)}$ =20, V_{BE} =-1V for the transistor in cut-off and I_B =1.5 $I_{B(min)}$ for the transistor in saturation, V_{cc} =8V, $I_{C(sat)}$ =2mA T=2ms, and R1=R2, find I_{C} , I_{C | (10)
ad C ? | | 13. | a)
b) | Design a full adder circuit ? Implement it using 3 to 8 decoder circuit ? Minimize the following function by K-Map Method : $f(a,b,c,d,e) = \sum_m (1,2,3,8,9,10,15,16,17,18,22,26,27) + \sum \phi(0,4,11,19,28,30,31)$? http://www.osmaniaonline.com | (5)
(5) | | 14. | a)
b) | Explain hazards in Digital Circuit with examples? Design a Code Converter which converts BCD to Excess-3 code? | (4)
(6) | | 15. | Des | ign a Mod-8 Synchronous counter using JK flipflops. | (10) | | 16. | a)
b) | Differentiate between Synchronous & Asynchronous sequential circuits. Design a 3-bit Asynchronous Ripple counter using JK flipflop. | (5)
(5) | | 17. | Write | e a short notes on any TWO : | (5+5) | - a) QuineMcClusky tabulation method. - b) Switching hazards. - c) Negative peak clamper circuit. - d) UJT. *****