CODE No. 5102/O

http://www.osmaniaonline.com

FACULTY OF ENGINEERING

BE 2/4 (ECE) Il Semester (Old) Examination, June -2016.

Sub: Pulse, Digital and Switching Circuits.

Time: 3 Hrs.	_	Max. Marks : 75
		max. Marks . / 3

Note: Answer All Questions From Part- A and Any Five Questions from Part-B. PART – 'A' (25 Marks)

1. 2. 3. 4. 5. 6. 7. 8. 9.	Dra Exp Sta Def Rea Dra Cor	to the clamping Circuit Theorem? It is Clamping Circuit Theorem? It is the circuit of compensating attenuator and explain? It is the circuit of compensating attenuator and explain? It is a voltage to frequency converter works with a neat circuit diagrate a prove DeMorgan's Theorem? It is a prove DeMorgan's Theorem? It is a prove Implicants & essential prime Implicants? It is a prove Implicants & essential prime Implicants? It is a prove Implicant & Truth table of SR, JK and T Flip Flops? It is a prove Implication table?	(3) (2) (3) (m? (3) (2) (2) (3) (3) (2)
		PART – B (50 Marks)	
11.	a)	Why a High Pass RC circuit is called a differentiator?	(3)
	b)	1 KHz symmetrical square wave of \pm 10 ν is applied to Low Pass RC circuit having 1 ms time constant. Calculate and plot the output ? circuit.	(7)
12.	a)	Design collector coupled mono stable multi vibrator using a NPN transistor. Neglect I_{CBO} and the Junction voltages. Assume $h_{fE(min)}$ =20, V_{BE} =-1V for the transistor in cut-off and I_B =1.5 $I_{B(min)}$ for the transistor in saturation, V_{cc} =8V, $I_{C(sat)}$ =2mA T=2ms, and R1=R2, find I_{C} , I_{C	(10) ad C ?
13.	a) b)	Design a full adder circuit ? Implement it using 3 to 8 decoder circuit ? Minimize the following function by K-Map Method : $f(a,b,c,d,e) = \sum_m (1,2,3,8,9,10,15,16,17,18,22,26,27) + \sum \phi(0,4,11,19,28,30,31)$? http://www.osmaniaonline.com	(5) (5)
14.	a) b)	Explain hazards in Digital Circuit with examples? Design a Code Converter which converts BCD to Excess-3 code?	(4) (6)
15.	Des	ign a Mod-8 Synchronous counter using JK flipflops.	(10)
16.	a) b)	Differentiate between Synchronous & Asynchronous sequential circuits. Design a 3-bit Asynchronous Ripple counter using JK flipflop.	(5) (5)
17.	Write	e a short notes on any TWO :	(5+5)

- a) QuineMcClusky tabulation method.
- b) Switching hazards.
- c) Negative peak clamper circuit.
- d) UJT.
