

Code No.: 6122

## FACULTY OF ENGINEERING

## B.E. 2/4 (ECE) II Semester (Supple.) Examination, December 2009 ANALOG ELECTRONIC CIRCUITS

Time: 3 Hours]

[Max. Marks: 75

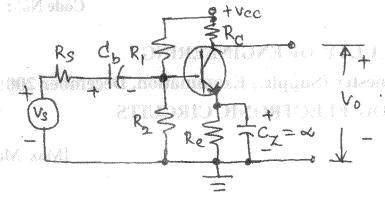
Note: Answer all questions of Part A. Answer five questions from Part B.

PART - A

(25 Marks)

- 1. The input coupling capacitor required with BJT amplifier is very much larger than that required with FET amplifier.
- 2. Differentiate between static and dynamic load of a TC amplifier.
- 3. Define the collector-circuit efficiency for a transistor power amplifier.
- 4. How cross-over distortion is eliminated or minimized?
- 5. Draw a transesistance amplifier equivalent circuit.
- 6. For an amplifier with 20dB of negative feedback, give the value of  $(1 + \beta A)$ .
- 7. Define quality factor Q.
- 8. What is neutralization?
- 9. Explain duty-cycle.
- 10. Define fold-back limiting.

PART - B


(50 Marks)

11. Sketch two stage RC-coupled CS-FET amplifier stages. Show the low frequency model for one stage and derive the expression for f<sub>1</sub>.

Code No.: 6122

10

12



Strat ment waterby will Fig. 1

In the circuit of Fig. 1 let  $R_s=500\,\Omega$ ,  $R_1=R_2=47K$ ,  $R_c=R_e=2K$ .  $h_{ie}=1.1K$ ;  $h_{fe}=50$ ;  $h_{re}=h_{oe}=0$   $C_b=5\,\mu$  F.

- a) Find f for the transistor stage.
- b) Find the value of  $C_z$  for which  $f_L$  is virtually unaffected by the presence of the emitter by pass capacitor.
- 13. Draw the schematic of a two-transistor class B, push-pull amplifier and show that  $P_{\text{Cmax}} \approx 0.4 P_{\text{max}}^{10.10 \text{ for the last constant to th$
- 14. What are the characteristics of a negative feedback amplifier? Discuss in detail. 10
- 15. For the transistor feedback amplifier shown in Fig. 2,  $h_{fe} = 100$ ;  $h_{ie} = 1000 \Omega$  and  $h_{re} = h_{oe} = 0$ . Calculate:
  - a)  $R_{Mf} = V_o/I_s$  where  $I_s = V_s/R_s$ .
  - b)  $A_{vf} = V_o/V_s$
  - c)  $R_{if}$  and
  - $d) R'_{of}$ .

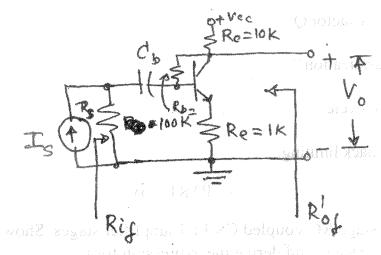



Fig. 2



Code No.: 6122

16. Explain the single transistorized tuned amplifier and derive the expression for its bandwidth.

10

17. a) Explain the operation of a shunt regular using op. amplifier.

5

b) For the network shown in Fig. 3 determine the range of  $V_i$  that will maintain at  $V_0 = 12$  V and not exceeding the maximum power ratings of the Zener diode.

5

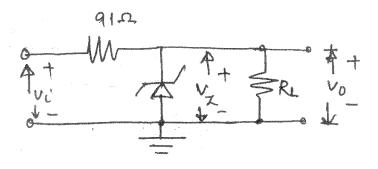



Fig. 3

Given that  $V_z = 8V$ ;  $P_z = 400 \text{ mW}$  and  $R_L = 220 \Omega$ .

3