Code No: 11408/CBCS

FACULTY OF ENGINEERING

B.E.(ECE) III Semester (CBCS) (Main & Backlog) Examination, Dec. 2018/Jan. 2019

Subject: Network Analysis & Synthesis

Time: 3 Hours

Max. Marks: 70

http://www.osmaniaonline.com

Note: Answer all questions from Part A & any five questions from Part B

PART - A (10x2=20Marks)

- 1. Define Image Transfer Constant and Propagation Constant of a network.
- 2. Find the Characteristics Impedance of the following Network.

- Justify that m-0.6 for m-derived terminating Half Sections?
- 4. Mention any Two important functions of an Equalizers.
- Design a symmetrical p Attenuator having an attenuation of 60dB and a nominal impedance of 600Ω
- Test Whether the following polynomial is Hunwitz or not s⁴+s³+3s²+2s+12.
- 7. Test Whether the following system is stable or Not using RH Criteria s⁵+4s⁴+6s³+3s²+6s+5
- 8. Mention the Properties of Positive Real Functions.
- 9. Find the cutoff Frequency of the following filter.

Derive the condition for a filter to lie in Pass Band.

PART - B (5x10=50 Marks)

11.(a) Find the Image Impedance of the following Network

(b) Find the Characteristics Impedance of the following Network. Derive the formulae you use.

Contd..2..

http://www.osmaniaonline.com

- Code No: 11408/CBCS
- 12 (a) Design a m-Derived High Pass Filter(T-Section) having a cutoff frequency of 4KHz and Frequency of Infinite attenuation 3KHz and a nominal Impedance of 500Ω.
 - (b) Design a Band Pass Filter with a Cut off Frequencies of 10KHz, 12 KHz and a Nominal Impedance of 600Ω
- 13 (a) Design a Composite High Pass Filter(p Section) having a Cutoff Frequency of 6 KHz Frequency of Infinite Attenuation is 5KHz, and a Nominal impedance of 600Ω .
 - (b) Find the Frequency at which Proto type T-section Low Pass Filter having a Cut off Frequency of f_c have an Attenuation of 15dB.
- 14 (a) Design a Symmetrical Bridge T Attenuator having an Attenuation of 60dB, and a Nominal Impedance of 600Ω. Derive the Formulae you use.
 - (b) Design a Full Series Equalizer for a Design Resistance of 600Ω and an attenuation of 12dB at 800Hz.
- 15 (a) For the Network shown Find the Driving Point Impedance, Transfer Impedance Z21

(b) Find the Current i(t) in the following Circuit Using Laplace Transformations Switch closed at t=0, Assume all the initial conditions are zero.

- 16 (a) The Driving Point Impedance of LC Network is given by Z(s)=s⁴+4s²+3/s³+2s Synthesize using second Cauer Method.
 - (b) The Driving Point Impedance of RL Network is given by Z(s)=5(s+1)(s+4)/(s+3)(s+5) Synthesize using Foster First Method.
- 17 Answer any Two of the following

http://www.osmaniaonline.com

- a) Properties of Positive Real Functions
- b) Derive the Characteristic Impedance of a Lattice Network
- c) Find the Laplace Transform of the following Waveform.
