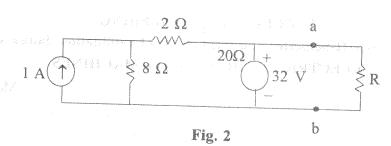

FACULTY OF ENGINEERING

B.E. 2/4 (CSE) (II-Semester) (Supplementary) Examination, January 2011 ELECTRICAL CIRCUITS AND MACHINES


[Maximum Marks: 75] Time: Three Hours] Answer ALL questions from Part A. Answer any FIVE questions from Part B. PART—A (Marks: 25) What is the average value of an alternating quantity? What is the relation between Average value 1. and Maximum value of sinusoidal alternating current or voltage? 2 Define the term Reactive Power. 2. In a 3-phase system what is the difference between star and delta connection? 3 3. Write the purposes of conducting a short-circuit test on a single phase transformer. 2 4. 2 Draw the torque speed characteristics of d.c. shunt motor. 5. A dc shunt motor develops 10 hp at 600 rpm when drawing a line current of 18 A at 500 volts. 6. 3 Find the Torque. List various methods of starting of induction motors. 7. Draw the torque-slip characteristics of a 3-phase induction motor and also indicate starting and 8. normal running region. How do you achieve time-phase difference between the currents of main auxiliary winding in a 9. split-phase capacitor start induction motor? 3 10. Write the advantages of Brushless DC motor. PART—B (Marks: 50)

11. (a) For the bridge circuit given in the figure 1, find the current through the 10Ω resistor across BD by mesh analysis.

(b) Find the Norton equivalent of the circuit shown in the figure below :-

- 12. (a) Deduce an expression for power in a 3-phase balanced circuit in terms of line voltage and line current.
 - (b) Derive the expressions for energy stored in inductance and capacitance. 5
- 13. (a) Explain the principle of operation of a transformer on no-load.
 - (b) A transformer on no-load takes 4.5 A at a power factor of 0.25 lagging when connected to a 230 V, 50 Hz supply. The number of turns of the primary winding is 250. Calculate
 - (a) the magnetising current,
 - (b) the core loss, and
- (c) maximum value of flux in the core.

 14. (a) Derive the emf equation of a dc generator.

 5
- (b) Explain the working principle of a dc motor.

 5
- 15. (a) Explain the production of a rotating magnetic field with a 3-phase supply and 3-phase winding.
 - (b) Derive the torque equation of an induction motor.
- 16. (a) Explain the principle of operation of a stepper motor.
 - (b) Explain the principle of operation of a split phase capacitor start-capacitor run motor. 5
- 17. Write short notes on any **THREE** of the following:—
 - (a) Dot convention
 - (b) Measurement of power by 2-wattmeter method
 - (c) Capacitor start and capacitor run Induction motor
 - (d) Applications of D.C. motors.

POU-15024

2

500