FACULTY OF ENGINEERING B. E. 4/4 (Civil) I Semester (Suppl.) Examination, July 2012 ## Subject: Surface and Ground Water Management | Time: 3 Hours $(E/ec+iVe-I)$ Max. Marks: | 75 | |---|-------------| | Note: Answer all questions from Part-A. Answer any Five questions from Part-B. | | | PART – A (25 Marks) | | | Define the term system and explain the concept of system. Distinguish between convex function and concave function. What is lagrangian multiplier? How it is useful in system problem. What do you understand by recursive equation in D.P. problem? Under what conditions D.P. problem method is useful in water resources. | 3
2
3 | | What do you understand by conjuctive use? State its suitability. Compare two popularly adopted resistivity arrangement viz. Wenner and Schlumberger methods in ground water resistivity test. At an interface of Land and Sea the following data has been obtained. Permeability 42.0 m/day. Thickness of aquifer 25.0 m, difference in specific permeability 42.0 m/day. | 2 | | gravity is 0.03. Salt water intrusion discharge per metre width 2.60 m³/day. Compute the length of Sea water intrusion. State atleast three conditions favourable for natural or artificial recharge of | 3 | | ground water. 9. Write the general water balance equation and list out all variables. 10. Explain how do you apply a D.P. Model for reservoir operation. | 2
2 | | PART – B (50 Marks) | | | 11.(a) Explain various steps of Systems Engineering.(b) Compare and contrast the following with relevance of systems engineering | 5
5 | | (i) Simple and complex system (ii) Lumped parameter and distributed parameter systems. 12.(a) Solve the following L.P. problem either graphically (or) analatically. Min. $Z = 20 x_1 + 10 x_2$ Sub to $0x_1 + 2x_2 \le 40$ $3x_1 + x_2 \ge 30$ $4x_1 + 3x_2 \ge 60$ | 5 | | $x_1, x_2 \ge 0$ (b) What do you understand by dynamic programming? Explain the general procedure and recursive equations for solving a D.P. Model for reservoir | 5 | | operation problem. 13.(a) Write a note on safe yield from ground water. Also explain any two methods of computation of safe yield from ground with relevant suitability conditions of these methods. | 5 | | (b) What do you understand by conjunctive use? Explain briefly the advantages of it. | 5 | | 14 (a) With the help of neat sketches explain recharge through pits and sharts and recharge through wells. | | | (b) Explain various irrigation methods of recharge of ground water. 15.(a) With the help of neat sketch explain Sank tank model and explain its | | | (b) Two crops are grown on a land of 500 Hact. The cost of rising crop 1 is 2 units / Hact and for crop 2 is 3 units / Hact. The gross benefit from crop is 6 units/Hact and that of crop 2 is 7 units/Hact. The total available money to grow the crops is 400 units. Compute the pattern of cropping to be | У | | followed to maximize net benefits. 16.(a) What do you understand by basin management of ground water? Explain all the features of it. | 6 | | (b) Distinguish between optimization and simulation modelling. | 10 |