Vasavi College of Engineering

Total Printed Pages: 2

Code No. 3254/N

Contd...2

FACULTY OF ENGINEERING AND TECHNOLOGY

B.E./B.Tech. II - Year II - Semester (New) (Main) Examination, June, 2011

MATHEMATICS 200192

Time: 3 Hours] [Max. Marks: 75

Note	: Answer all questions of Part - A.	
More	Answer five questions from Part - B.	25
	PART - A	
1.	Define Probability.	2
2.	Find the median from the distribution of marks obtained by 49 students.	3
3.	Verify the Rolle's theorem for $\frac{\sin x}{e^x}$ in $(0, \pi)$.	3
4.	The curvature of the circle $x^2 + y^2 = 25$ at the point (3, 4) is	2
5.	The surface area of a sphere of radius 4 cm. is	2
6.	$\iint dx dy \text{ over the area bounded by } x = 0, y = 0, x^2 + y^2 = 1 \text{ and } x^2 = 4y \text{ is } \underline{\hspace{1cm}}$	3
7.	If F is solenoidal, then $\nabla \cdot F = \underline{\hspace{1cm}}$.	2
8.	If $F = axi + byj + czk$, then $\int_{S} F.ds$, s being the surface of a unit sphere is:	3
	(a) $4\pi/3$ $(a + b + c)$ (b) 0	
	(c) $\frac{4}{3}\pi (a+b+c)^2$ (d) $\frac{1}{2}$	
9.	Find $\beta(\frac{1}{2}, \frac{1}{2})$	2
10.	The value of $\Gamma(3.5)$ is	3

PART - B

50

- 11. State and prove addition and multiplication theorems for discrete random variables. 10

12. (a) State and prove Cauchy's Mean Value Theorem.

5

(b) Find the Taylor's series for $f(x) = \sin x$ in powers of $\left(x - \frac{\pi}{4}\right)$.

5

5

- 13. Find the volume of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.
- 14. (a) Find the directional derivative of $f(x, y, z) = 2xy + z^2$ at (1, -1, 3) in the direction 5 of i+2j+2k.
 - (b) If $\overline{F} = 3xyi + y^2j$, evaluate $\int_c \overrightarrow{F} \cdot d\overrightarrow{r}$, where c is the curve in the xy-plane $y = 2x^2$ from (0, 0) to (1, 2).
- 15. (a) Define Beta and Gamma functions. 5
 - (b) Show that $\Gamma \frac{1}{2} = \sqrt{\pi}$
- 16. (a) Find the envelope of $\frac{x}{a} \cos \alpha + \frac{y}{b} \sin \alpha = 1$, α is the parameter.
 - (b) Find the radius of curvature of the curve $x = at^2$, y = 2at at any point.
- 17. (a) Apply Stoke's theorem, evaluate $\oint_C (x + y) dx + (2x z) dy + (y + z) dz, \text{ where C is the boundary of the triangle with vertices}$ (2, 0, 0), (0, 3, 0) and (0, 0, 6)
 - (b) Evaluate $\int_{0}^{\infty} x^2 e^{-x^2} dx$.