OSMANIA UNIVERSITY FACULTY OF ENGINEERING

UNIVERSITY COLLEGE OF ENGINEERING (AUTONOMOUS)

B.E. (All Branches) II-Semester (Main) Examinations, October 2021

ENGINEERING MATHEMATICS-11

Time: 2 hours Max. Marks: 70

Note: i) First Question is compulsory which carries 16 marks and it consists of 7 sub questions ((a-g) and answer any 4 sub questions.

ii) Answer any Three questions from the remaining six questions (2-7). Each question carries 18 Marks.

iii) Missing data, if any, may suitably be assumed.

iii) Missing data, if any, may sunably be assumed.			
	Marks	вт	со
1. a) Find the rank of the matrix $A = \begin{bmatrix} 0 & 1 & -3 \\ 1 & 0 & 1 \\ 3 & 1 & 0 \end{bmatrix}$	4	ŧ	1
b) Check whether the following vectors are linearly dependent or not. If so, find the relation between them.	4	4	1
$x_1 = (1,3,4,2), x_2 = (3,-5,2,2), x_3 = (2,-1,3,2)$			
c) Find the orthogonal trajectories of the family of curves $y = ce^x$, c is parameter.	4	2	2
d) Show that x, x ² , x ³ are linearly independent on any interval I. https://www.osmaniaonline.com	4	1	3
e) Find the constants a, b such that the function $f(z) = x - 2ay + i(bx - ay)$ is analytic.	4	5	4
f) Expand $f(z) = \frac{1}{z}$ about $z = 2$ in Taylor's series.	4	6	5
g) Solve $y'' + 2y' + 2y = 0$	4	3	3
2. a) Solve the system of equations $4x + 2y + z + 3w = 0$ $6x + 3y + 4z + 7w = 0$ $2x + y + w = 0$	9	6	1
b) Using Cayley-Hamilton theorem, find A^8 , if $A = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$	9	3	l
3. a) Solve $y' + 4xy + xy^3 = 0$.	9	3	3 2
b) Find the general solution of the differential equation $y' = y^2 - (2x - 1)y + x^2 - x + 1$, if $y = x$ is solution of the equation.) (:	5 2

4. a) Using the method of variation of parameters, solve y'' + y = cosecx

9 4 3

b) Solve $(D^2 - 4)y = 2\cos^2 x$.

- 9 6 3
- 5. a) Evaluate $\int \frac{z^2+1}{z(2z-1)} dz$, C: |z| = 1, using Cauchy's integral formula.
- 9 5 4
- b) Show that $u(x,y) = 2x + y^3 3x^2y$ is harmonic, find its harmonic conjugate and corresponding analytic function f(z).
- 9 2 4

- 6. a) Expand $f(z) = \frac{1}{z^2 3z + 2} dz$ in the region (i)0 < |z - 1| < 2 (ii)1 < |z| < 2
- 9 4 5
- b) Find the Bilinear Transformation which maps the points -1, 0, 1 in the z-plane onto the points 1, i, -1 in the w-plane.
- 9 6 5
- 7. a) Evaluate the integral $I = \int_0^{2\pi} \frac{d\theta}{1 2a\cos\theta + a^2}$ where a is the complex constant and (i) |a| < 1 (ii) |a| > 1
- 9 5 4

b) Solve $2x^2y'' + 3xy' - 3y = x^3$

9 3 3

* * * * *

https://www.osmaniaonline.com Whatsapp @ 9300930012 Send your old paper & get 10/-अपने पुराने पेपर्स भेजे और 10 रुपये पार्य, Paytm or Google Pay से