FACULTIES OF ARTS AND SCIENCE

B.A. / B.Sc. III-Year Examination, March / April 2014

Subject : Mathematics Paper – IV(a) : Numerical Analysis

Time: 3 Hours Max. Marks: 100

Note: Answer six questions from Section-A and four questions from Section-B. choosing atleast one from each unit. Each question in Section-A carries six marks and in Section-B carries 16 marks.

Section – A (6 x 6 = 36 Marks)

Unit-I

- 1 Explain Bisection method to find a real root of the equation f(x)=0.
- Use Newton-Raphson method to obtain a root of the equation $\sin x = \frac{1}{2}x$ correct to three decimal places.

Unit-II

- 3 Prove that the third order divided difference of the function $f(x) = \frac{1}{x}$ with arguments a, b, c, d is $\frac{-1}{abcd}$.
- The population of a town in the decennial census was as given below. Estimate the population for the year 1955.

llnit-III

 Year x
 1951
 1961
 1971
 1981
 1991

 Population y (in thousands)
 46
 66
 81
 93
 101

5 Find the values of a_0 and a_1 such that $y = a_0 + a_1 x$ fits the data given in the following table.

Х	0	1	2	3	4
У	1.0	2.9	4.8	6.7	8.6

6 Find the value of $\int_{3}^{7} x^{2} \log x \, dx$ by taking 8 strips using Boole's rule.

Unit-IV

- 7 Explain Gauss-Seidel method of solving a system of linear equations.
- 8 Given $\frac{dy}{dx} = 1 + xy$ and y(0)=1, obtain the Taylor's series for y(x) and compute y(0.1) correct to four decimal places.

Section-B $(4 \times 16 = 64 \text{ Marks})$

Unit-I

- 9 (a) Explain generalized Newton's method to determine a root of the equation f(x)=0 with multiplicity p.
 - (b) Use Newton-Raphson method to obtain a root of the equation x^2 -18=0 correct to three decimal places.
- 10 (a) Describe Ramanujan's method to determine the smallest root of the equation f(x)=0.
 - (b) Find a root of the equation sinx = 1 x by Ramanujan's method.

Unit-II

- 11 (a) Derive Newton's general interpolation formula with divided differences.
 - (b) Use Stirling's formula to find u_{32} from the following data: u_{20} =14.035; u_{25} =13.674; u_{30} =13.257; u_{35} =12.734; u_{40} =12.089; u_{45} =11.3039
- 12 (a) Derive Gauss's forward formula for interpolation.
 - (b) Applying Lagrange's formula, find a cubic polynomial which approximates the following data:

Х	-2	-1	2	3		
v(x)	-12	-8	3	5		

Unit-III

- 13 (a) Derive the normal equations to fit a straight line to the given data.
 - (b) Find $\frac{dy}{dx}$ at x = 3 from the following table :

Х	0	1	2	3	4	5	6
٧	6.9897	7.4036	7.7815	8.1291	8.4510	8.7506	9.0309

- 14 (a) Derive the general formula to obtain an approximate value of the definite integral $\int_{a}^{b} y \, dx$.
 - (b) Derive Simpson's $\frac{3}{8}$ rule and use this to evaluate $\int_{0}^{1} \frac{1}{1+x} dx$ with $h = \frac{1}{6}$.

Unit-IV

15 (a) Describe Jacobi's iteration method to solve the following system of linear equations:

$$a_{11}x_1+a_{12}x_2+a_{13}x_3=b_1$$
 $a_{21}x_1+a_{22}x_2+a_{23}x_3=b_2$ $a_{31}x_1+a_{32}x_2+a_{33}x_3=b_3$

- (b) Apply Gauss Seidel iterative method to solve the system of equations : 27x + 6y z = 85; 6x + 15y + 2z = 72; x + y + 54z = 110.
- 16 (a) Explain the method of solving the differential equation y'=f(x, y), $y(x_0)=y_0$ by Taylor's series method
 - (b) Use Runge-Kutta fourth order method to find y(0.2) given y(0)=1 and y'=3x+ $\frac{1}{2}$ y.