FACULTIES OF ARTS AND SCIENCE

B.A./ B.Sc. III-Year Examination, March / April 2014

Subject: Mathematics Paper - IV(b): Fourier Series and Integral Transforms

Time: 3 Hours Max. Marks: 100

Answer six questions from Section-A and four questions from Section-B, choosing Note: atleast one from each unit. Each question in Section-A carries six marks and in Section-B carries 16 marks.

Section – A (6 x 6 = 36 Marks)

Unit-I

- Find the Fourier series expansion for $f(x) = \begin{cases} -\pi, & -\pi < x < 0 \\ x, & 0 < x < \pi \end{cases}$
- Find the Fourier series expansion of f(x) = |x| in $(-\pi, \tau)$ 2

Unit-II

- Find $L\{t(3\sin 2t 2\cos 2t)\}$
- Find $L^{-1}\left\{\frac{p-1}{(p+3)(p^2+2p+2)}\right\}$.

Unit-III

- Find the cosine transform of $f(x) = \begin{cases} \cos x, & 0 < x < a \\ 0, & x > a \end{cases}$
- Find the Fourier cosine transform of e^{-x^2}

Unit-IV

- Solve $(D^2 + 4D + 4)x = sinwt$, t > 0 with x_0 and x_1 for values of x and Dx when t = 0
- Solve t y" + y' + 4ty = 0 if y(0)=3, y'(0)=0.

Section-B $(4 \times 16 = 64 \text{ Marks})$

Unit-I

- (a) Find the Fourier series expansion for $f(x) = x\sin x$ in the interval $(-\pi, \pi)$. Hence deduce that $\frac{\pi}{4} = \frac{1}{2} + \frac{1}{1.3} - \frac{1}{1.5} + \dots$ (b) Expression f(x) = x as a half-range sine and cosine series in 0 < x < 2.
- 10 (a) Find the Fourier series for $f(x) = \begin{cases} 0, & -2 < x < 0 \\ 1, & 0 < x < 2 \end{cases}$
 - (b) Expand $f(x) = e^{-x}$ as a Fourier series in the interval $(-\ell, \ell)$.

Unit-II

- 11 (a) If $L^{-1}\{f(p)\} = F(t)$ then show that $L^{-1}\{f^n(p)\} = L^{-1}\left[\frac{d^n f(p)}{dp^n}\right] = (-1)^n t^n F(t)$. Using it find $L^{-1}\left\{\log\left(\frac{p+3}{p+3}\right)\right\}$
 - (b) State and prove Initial value theorem and Final value theorem.
- 12 (a) If L{F(t)} = f(p), then show that $L\left\{\frac{1}{t}F(t)\right\} = \int_{-\infty}^{\infty} f(x)dx$, and hence find $L\left\{\frac{\sin t}{t}\right\}$.

-2-

(b) State and prove Heaviside's expansion theorem, and use it to find $L^{-1}\left[\frac{2p^2+5p-4}{p^3+p^2-2p}\right]$.

Unit-III

- 13 (a) Find the Fourier transform of $F(x) = \begin{cases} 1 x^2, & |x| \le 1 \\ 0, & |x| > 1 \end{cases}$ and hence evaluate $\int_0^\infty \left(\frac{x \cos x \sin x}{x^3} \right) \cos \frac{x}{2} dx$
 - (b) Find the Fourier sine transform of $\frac{e^{-ax}}{x}$
- 14 (a) Find the finite Fourier sine and cosine transform of f(x) = x.
 - (b) Find the Fourier sine transform of $f(x) = \frac{1}{x(a^2 + x^2)}$.

Unit-IV

15 (a) Solve $(D^3 - D^2 + 4D - 4)y = 68 e^t \sin 2t$, y = 1, Dy = -19, $D^2y = -37$ at t = 0.

(b) Solve $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ if $u_x(0,t) = 0, u(x,0) = \begin{cases} x, & 0 \le x \le 1 \\ 0, & x > 1 \end{cases}$ and u(x, t) is bounded when x > 0, t > 0, use Fourier cosine transform.

16 (a) Solve $(D^2 - 2)x - Dy = 1$, $Dx + (D^2 + 2)y = 0$ if x = 0 = Dx = Dy = y when t = 0.

(b) Solve $\frac{\partial u}{\partial t} = 2 \frac{\partial^2 u}{\partial x^2}$ if u(0, t), $u(x, 0) = e^{-x}$, x > 0, u(x, t) is bounded when x > 0, t > 0.