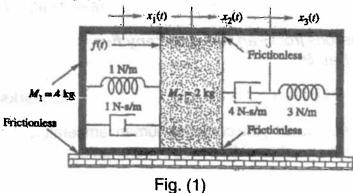


Code No. : 5215/S

FACULTY OF ENGINEERING B.E. 4/4 (Prod.) I Semester (Suppl.) Examination, June 2012 CONTROL SYSTEM THEORY

Time: 3 Hours]	/lax. Marks: 75
Note: Answer all questions from Part A. Answer any five questions from Part B. PART – A	(25 Marks)
 Draw a block diagram for a system representing the control of human te by the way of sweating and indicate the location of following componer 	mperature
a) The process output signal	
b) The input	
c) The sensor	
2. A non-linear device is represented by a function $y = f(x) = x^{1/2}$ where the point for the input x is $x_0 = 1/2$. Determine the linear approximation value	operating e. 4
3. If $A = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix}$, find state transition matrix $\phi(t)$.	4
4. Find the steady state gain and time constant for a first order system gi	ven as
$G(S) = \frac{1}{2 + 0.1S}$	2
 List out the advantages of Frequency response techniques over time detechniques. 	omain 2
 The unit step response test conducted on a second order system yielder and t_p = 0.3 ms. Obtain the corresponding frequency response indices (M_r, W_r, W_b) for the system. 	$d M_p = 0.2$
7. What is the basis for the selection of a particular compensator.	3
8. What is the major objective of adding a derivative signal in a feedback s	ystem? 2

Code No.: 5215/S


PART-B

(50 Marks)

10

10

9. Find the transfer function $\frac{X_3(s)}{F(s)}$ for the given translational mechanical system given in fig (1).

10. Using Mason's rule, find the transfer function $T(s) = \frac{C(s)}{R(s)}$ for the system represented by fig. (2).

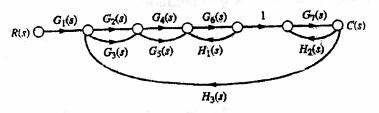


Fig. (2)

Consider the translational mechanical system given in fig (3). Find K and M such that the response is characterised by a 2-second settling time and a 1 sec peak time. Also, find what is the resulting percent overshoot.

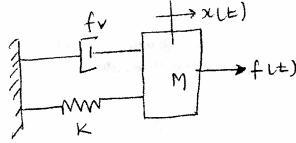


Fig. (3)

Code No.: 5215/S

12. Consider a unit feedback control system with the given feedforward transfer function.

10

$$G(s) = \frac{K}{S(S^2 + 4S + 8)}$$

Plot the root loci for the system. If the value of gain 'k' is set equal to 2 where are the closed loop poles located.

13. Draw a Nyquist plot for the unity feedback control system with the open loop transfer function.

$$G(s) = \frac{K(1-S)}{S+1}$$

Using the Nyquist stability criterion, determine the stability of the closed loop system.

10

14. Consider the system given by $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 3 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$ 10

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Find whether the system is completely state controllable and completely observable. Also check whether the system is completely output controllable.

15. Write short notes on:

10

- a) Dynamic characteristics of a PI controller
- b) Importance of Laplace transforms
- c) Specifications of a 2nd order system.

500