FACULTY OF ENGINEERING

B. E. 4/4 (Prod.) I-Semester (Old) Examination, July 2010

Subject : Control System Theory

Time: 3 Hours

Max. Marks: 75

Note: Answer all questions from Part-A. Answer any Five questions from Part-B.

Part – A (25 Marks)

Find the transfer function of the following system. 1.

2. What is a signal flow graph? Explain.

3

Define 'steady state error'. 3.

3

Define 'gain margin' and phase margin. 4.

3

5. Distinguish between PI and PID controller.

3

6. Mention the uses of 'Bode plot'.

- 2
- Write down Ruth's table for the following characteristic polynomial and 7. state the range of 'k' for which the system would be stable :

$$9(S) = S^3 + 2S^2 + 4S + K$$

Define the term: Observability. 8.

2

What is meant by root sensitivity? 9.

2

Find the step response Y(E) for the following system : 10.

2

Input
$$\xrightarrow{1}$$
 $\xrightarrow{s+1}$ $\xrightarrow{y(c+)}$

10

Part - B (50 Marks)

11. Find the transfer function of the following systems.

12. A system has a signal flow diagram as shown below. Determine transfer function:

13. A feed back system is shown in following fig:

- a) Determine the steady state error for a unit step with k=0.4, $G_p(S)=1$.
- b) Select an appropriate value for $G_p(S)$ so that the steady state error is equal to zero for unit step input.
- Sketch the root locus for the following open loop transfer function of the system.

