CACOLLI OF ENGINEERING

B.E. 4/4 (Mech/Prod) I - Semester (Main) Examination, December 2011

Subject: Computational Fluid Flows (Elective - I)

Time: 3 Hours Max. Marks: 75

Note: Answer all questions from Part A. Answer any Five questions from Part B.

PART – A (25 Marks)

- 1. Explain Reynold's stress matrix.
- 2. Write down the assumptions made in deriving N-S equation.
- 3. What is turbulence closure? List any four turbulence models.
- 4. Explain derichlet and Neumann Boundary conditions.
- 5. Differentiate between explicit and implicit approaches in CFD.
- 6. Define the terms stability, consistency and convergence.
- 7. What is the difference between Jacobi and Gauss Scidal methods?
- 8. Explain the mapping layout of 0-types grid.
- 9. Write brief notes on staggered grid.
- 10. List out the advantages of FVM.

PART - B (50 Marks)

- 11. Derive the momentum equation for viscous flow from fundamentals.
- 12. Explain K-ε turbulence model and mention clearly why it fails on a curved boundary.
- 13. Derive the condition of stability for the following equation using Von-Neumann stability analysis.

$$U_{i}^{n+1} - U_{i}^{n} = \frac{\alpha \Delta t}{\Delta x^{2}} \left[U_{i+1}^{n+1} - 2U_{i}^{n+1} + U_{i-1}^{n+1} \right]$$

- 14. What are different methods to solve viscous incompressible flow? Explain Vorticity stream function method in detail.
- 15. Consider one dimensional convective diffusive term. Using finite volume method discretize the equation over control volume using upwind differencing scheme.

- 16. Without writing any discretized equation, explain semi implicit method for pressure linked equation.
- 17. Write short notes on:
 - a) Laminar and Turbulent flows
 - b) Potential and viscous flows
 - c) Mixing length model.