

Code No.: 5003/N

FACULTY OF ENGINEERING AND INFORMATICS B.E. I Year (New) (Common to all Branches) (Suppl.) Examination, January 2012 MATHEMATICS – II

Time: 3 Hours]

[Max. Marks: 75

Note: Answer all questions from Part A, Answer any five questions from Part B.

	PART – A	(25 Marks)
1.	Eliminate arbitrary constant from	
	$y = cx + \frac{1}{c}$, $c \neq 0$ and form a differential equation.	2
2.	Find the solution of the differential equation $(y - x + 1) dy - (y + x + 2) dx = 0$.	3
3.	Show that functions x , x^2 , x^3 are linearly independent on any interval	all. 2
4.	Solve $y'' + y' - 2y = 0$, $y(0) = 0$, $y'(0) = 3$.	3
5.	Find the singular points of $x^2y'' + (x + x^2)y' - y = 0$ and classify them	. 2
6.	Find the value of $T_3(x)$ (Chebyshev polynomial).	3
7.	Find the value of $\beta \left(\frac{9}{2}, \frac{7}{2} \right)$.	2
	Express $J_3(x)$ in terms of $J_0(x)$ and $J_1(x)$.	3
9.	Find Laplace transform of $1 + 2\sqrt{t} + 3\sqrt{t}$.	2
10.	Find the inverse Laplace transform of $\frac{S^2 - 3S + 4}{S^3}$.	3
	PART-B	(5×10=50 Marks)

5

5

11. a) Solve the initial value problem $3x^2y^4dx + 4x^3y^3dy = 0$, y(1) = 2.

b) Solve the differential equation, $\frac{dy}{dx} - y = y^2 (\sin x + \cos x)$.

Code No.: 5003/N

12. a) Find the general solution of the Riccoti equation.

5

- $y' = 4xy^2 + (1 8x)y + 4x 1$, y = 1 is a particular solution.
- b) Solve the initial value problem y''' 2y'' 5y' + 6y = 0, y(0) = 0, y'(0) = 0, y''(0) = 1. 5

13. a) Solve $y'' + 4y = \cos^2 x$.

5

5

5

- b) If $y_1 = e^x$ is one of the solutions of y'' + 3y' 4y = 0, then find general solution, by reducing order of differential equation.
- 14. Find the series solution about x = 0 of the equation $(1 x^2)y'' 2xy' + 6y = 0$. 10
- 15. a) Show that $\int_{-1}^{1} p_m(x)p_n(x)dx = \begin{cases} 0, & m \neq n \\ \frac{2}{2n+1}, & m = n \end{cases}$ 5
 - b) Evaluate $\int_{0}^{\infty} e^{-a^{X}} n^{m-1} \sin bx \, dx$ interms of Gamma function.
- 16. a) Prove that $\beta(m + 1, n) + \beta(m, n + 1) = \beta(m, n)$. 5
 - b) Show that $J_n(x) = \frac{1}{\pi} \int_0^{\pi} \cos(n\theta x \sin n\theta) d\theta$. 5
- 17. a) Apply convolution theorem to evaluate $L^{-1} \left| \frac{s}{(s^2 + a^2)^2} \right|$. 5
 - b) Solve $(D^2 + n^2) x = a \sin (n t + \alpha)$; x = Dx = 0 at t = 0 using Laplace transform. 5