FACULTY OF INFORMATICS

B.E. 4/4 (I.T.) I-Semester (New) (Main) Examination, November/December, 2009

Subject: VLSI DESIGN

Tim	le: 3 Hours] [Max. Marks: 7	75
Note	e: Answer all questions from Part - A. Answer any five questions from Part - B.	
	PART - A (25 Mark	s)
1.	(a) State Moore's law.(b) Draw a CMOS logic circuit of a 2-input XOR gate.	2
2.	Consider an n-channel MOSFET with the following characteristic tox = 10nm μ_n = 500	2
	Cm ² /v-sec (W_L) = 8 V_{Tn} = 0.75V. Calculate the device transconductance β_n .	
3.	Draw the CMOS structure for the following: (a) VIA (b) n MOSFET.	3
4.	Draw a CMOS logic circuit of a NOR gate and its stick diagram representation.	3
5.	Define propagation delay of an inverter.	2
6.	An inverter uses FETs with $\beta_n = 2.1 \text{mA/V}^2$ and $\beta_p = 1.8 \text{mA/V}^2$. The threshold voltages are given as $V_{Tn} = 0.6 \text{V}$ and $V_{Tp} = -0.65 \text{V}$ and the power supply has a value of $V_{DD} = 5 \text{V}$. The parasitic FET capacitance at the output node is estimated to be $C_{FET} = 70 \text{fF}$. Find the mid point voltage.	3
7.	Draw the pseudo - nMOs circuit that provide the following logic operation :	3
	(a) $f = \overline{a+b+c}$ (b) $h = (\overline{a+b+c}) \cdot x + y \cdot z$	
8.	Draw the structure of AND-OR Programmable Logic Array (PLA).	2
9.	Write the verilog code for a D flip - flop.	3
10.	An interconnect line is made from a material that has a resistivity of $e=4~\mu\Omega-cm$. The inter connect is $1200~\text{Å}$ thick $(1~\text{Å}=10^{-8}\text{cm})$. The line has a width of $0.6\mu\text{m}$. Calculate the sheet resistance Rs of the line.	2
	Contd	.2
	10043	3 E

PART - B

(50 Marks)

5

5

5

4

5

3

3

4

4

11. (a) An n-channel MOSFET has a mobility value of μ_n = 560 cm²/V-sec and uses a gate oxide with a thickness of tox = 90 Å. The gate voltage is given as V_G = 2.5 V. and the threshold voltage is 0.65V. Calculate the value of Cox, k_n' and β_n. Assume the FET has a channel length of 0.25 μm and a channel width of 2 μm. Calculate the current when v_{DS} = 4V.
(b) Consider the OAI logic function :

 $g = \overline{(a+b) \cdot (c+d) \cdot e}$

Design the CMOS logic gate and explain its function.

- 12. (a) Draw the layout and stick diagram representation of a NOT and a NOR gate.
 - (b) Explain the latch up problem clearly. How it can be prevented?
- 13. (a) Derive an expression for the number of stages N required in an inverter cascade to minimize the delay.
 - (b) In an Inverter cascade the load capacitance $C_L = 10 \text{ pF}$. The input stage is defined with $C_1 = 20 \text{ fF}$. Determine the number of stages required to minimize the delay.
- 14. (a) Draw the general structure of a pseudo nMOS logic and explain.
 - (b) Derive an expression for the low output voltage V_{OL} pseudo n MOS inverter.
 - (c) Draw a tristate inverter circuit and explain its functioning.
- **15.** (a) Draw a 4 : 1 MVR using nFET pass transistors and explain. Give verilog code for it.
 - (b) With a suitable diagram explain the function of a 4 bit ripple carry adder. Write the verilog code to construct the same.
- **16.** (a) Considering logic gates as basic cells explain the creation of new cell using basic gates.
 - (b) Derive the expressions for the rise time and fall time calculation of a CMOS inverter.
 - (c) Draw the cross section and mask set of n Wells, n⁺ region and P⁺ region.
- 17. Write notes on the following:
 - (a) Dynamic RAMs and SRAM arrays.
 - (b) Inter connect modeling. 3
 - (c) Testing of VLSI circuits.