

Code No.: 5292/M

FACULTY OF INFORMATICS B.E. 3/4 (IT) II Semester (Main) Examination, May/June 2012 DESIGN AND ANALYSIS OF ALGORITHMS

Time: 3 Hours] [Max. Marks: 75

Note: Answer **all** questions from Part **A**. Answer **any five** questions from Part **B**.

	PART-A	25
1.	Define Heap.	2
2.	Explain Union and find operations.	3
3.	Define optimal solution.	2
4.	Difference between Divide-and-Conquer and Dynamic Programming.	3
5.	What is multistage graph?	2
6.	State travelling salesperson's problem.	3
7.	Write the control abstraction of Lc-Search.	3
8.	What is decision problem?	3
9.	What is branch and bound?	2
10.	Define NP hard-NP complete.	2
	PART-B (5×10=50 N	/larks)
11.	a) What is an algorithm? Explain time and space complexity of an algorithm.	· 5
	b) Write about Asymptotic Notation.	5
/mpml- ·		

Code No.: 5292/M

12.	a)	What is Knapsack problem? Explain.	3
	b)	Find an optimal solution to the Knapsack instance $n = 3$, $M = 20$, $(P_1, P_2, P_3) = (25, 24, 15)$ and $(W_1, W_2, W_3) = (18, 15, 10)$.	7
13.	a)	Explain Reliability Design Problem.	4
	b)	Write a recursive backtracking algorithm to find all the Hamiltonian cycles of a given graph.	6
14.	a)	Explain FIFO Branch and Bound.	5
	b)	Explain graph coloring problem.	5
15.	Sta	ate and prove Cook's theorem.	10
16.	a)	Discuss in detail about the problem of job sequencing with deadlines.	4
	b)	Write Prim's algorithm and explain with an example to find minimum spanning tree.	6
17.	Wı	ite short notes on :	
	a)	Node covering problem.	4
	b)	Single source shortest paths.	3
	c)	Optimal binary search trees.	3