

Code No.: 6249

## FACULTY OF INFORMATICS B.E. 2/4 (IT) II Semester (Supplementary) Examination, December 2009 SIGNALS AND SYSTEMS

Time: 3 Hours] [Max. Marks: 75 **Note**: Answer all questions from Part A. Answer any five questions from Part B. PART – A (25 Marks) 1. Define unit-step and unit-pulse functions. 2 2. Discuss about various classifications of signals. 3 3. Distinguish between energy and power signals. 3 4. What is ROC? Find the ROC of the following Laplace transform. 2  $X(s) = \frac{s+1}{(s+2)(s+4)}$ 5. Define aliasing. 2 6. Differentiate between coding and quantization. 3 7. Define the two-sided z-transform. 2 8. Draw the ROC of the discrete signal.  $x(n) = a^n u_c(n) - b^n u_c(-n-1).$ 3 9. Check whether the system  $y(n) = e^{x(n)}$  is linear or not. 3 10. Distinguish between auto correlation and cross correlation. 2 PART - B (50 Marks) 11. Find all the 3 representations of Fourier series of a pulse train. 10 12. a) Define Laplace transform, and write any five properties of Laplace transform. 6 b) Define band width of a signal. Distinguish between base band, pass band and narrow band signals. 4 1



Code No.: 6249

13 a) Explain Zero-Order-Hold sampling

- 4
- b) Explain about addition, multiplication and scaling of sequences with examples.
- 14. a) Find the solution of the following difference equation.

$$y(n+1) - \frac{1}{4}y(n) = \frac{1}{4}x(n) \ y(0) = 0, \ x(n) = u_s(n).$$

b) Find the z-transform of

$$(0.1)^n u_s(n) - 2^n u_s(-n-1)$$
 and sketch the ROC.

10

- 15. Explain various system representations. Derive all the 4 system representations of an RC network.
  - 10
- 16. Find the solution of the following differential equation.

$$\ddot{y}(t) + 7\dot{y}(t) + 10\dot{y}(t) = x(t)\dot{y}(0) = 3, \ \dot{y}(0) = 2, \ x(t) = (1 - e^{-3t})\dot{y}(t).$$

- 17. Write short notes on:
  - a) BIBO stability.

3

b) Convolution and correlation.

a casanibii č 🛪

c) Block diagram reduction.

http://www.osmaniaonline.com