

Code No.: 5012/0

FACULTY OF ENGINEERING & INFORMATICS B.E. I Year (Common to All Branches) Examination, January 2012 ENGINEERING PHYSICS (Old)

Time: 3 Hours]

[Max. Marks:75

Note: Answer all questions from Part A. Answer any five questions from Part B.

	PART—A (25 Mark	(S)				
· ·	Design a double-slit system in which the central maximum of the envelop of the double slit Fraunhofer pattern contain only eleven fringes.	2				
2.	A beam of linearly polarized light of wavelength 6000 Å is changed in to circularly polarized light by passing it through a slice of 0.003 cm thick. Calculate the difference in refractive indices of the two (0-and e-ray) rays in the crystal.	2				
3.	. A nuclear particle decays on average about 0. 1ns after it is created. Its rest energy is 1672 MeV. Estimate the fractional uncertainty in the particles rest energy. 3					
4.	Relative to the laboratory, a proton moves to the right with a speed of (4/5) c, while relative to the proton an electron moves to the left with a speed of (5/7) c. What is the speed of electron relative to the lab?	3				
5.	In a given dielectric medium the phase velocity is given by	2				
	a) $1/\sqrt{\mu_r \epsilon_r}$ b) $\sqrt{\mu_r \epsilon_r}$					
	c) $C/\sqrt{\mu_r \epsilon_r}$ d) $\sqrt{\mu_r \epsilon_r}/C$					
	Find the Miller indices of a set of parallel planes. Which make equal intercepts on the three axes.					
7.	7. The intrinsic carrier density at 300K in silicon is 1.5×10^{16} /m ³ . If the electron and hole mobilities are 0.13 and 0.05 m ² V ⁻¹ s ⁻¹ repectively. Calculate the conductivity of intrinsic silicon.					
0		2				
	Draw the neat diagram of Bragg's spectrometer and explain its principle.					
9.	What is magnetic Hysterisis? How it is used to explain the nature of different magnetic materials.	2				
		-,0000				
(This	S naner contains 2 nages) 4					

Code No.: 5012/0

7		2		60 m. 3 juna 1144 j. 700			
	C)	Meissner effect.		2			
Þ	-	LED Maioran effect		4			
		Crystal systems and bravais lattice					
17.	Wı	rite short notes on :	egela mar en en en egene ha hali				
		Using Schrodinger wave equation, discuss the the potential step.		6			
16.	9.1	Explain qualitatively diffraction pattern observed wit grating.	THE VIEW OF THESE (BURREL SOLL 🔥			
	c)	Write few applications of super conductors.	Somethings of a Settle	2			
	_b)						
15.			lectric constant of m				
	c)	Explain the construction of Solar cell.		2			
	b)	Discuss the Mass Bauer spectroscopic techr materials.		nalysis of			
14.	(a)	Explain how conductivity of intrinsic and extr temperature.	insic semi conducto	ors vary with			
	c)	Explain the classification of solids in to conductors on the basis of band theory of sol		nd semi 3			
		Obtain an expression for the equilibrium cond	entration of Frenke	defects. 5			
13.	a)	Define Schottky and Frenkel defects.		,			
	c)	Obtain the Maxwell - Boltzmann distribution I	unction.				
		Define the nature of particles which obey the I					
12.	a)	Explain how Entropy and Thermodynamical p	robability are relate				
	∕ 5)	Explain the terms critical angle, Acceptance a Obtain the expression for Acceptance angle ar fibre.					
11.	a)	Explain how light is propagated through multi mo	de step and graded in	ndex fibres. 4			
		PART-B		(5×10=50 Marks)			
10.	pla	Calculate the induced dipole moment per unit volume of helium gas when it is placed in a field of 6×10^5 V/m. The atomic polarizability of helium is 0.18×10^{-40} FM ² and the concentration of helium atom is 2.6×10^{25} /m ³ .					