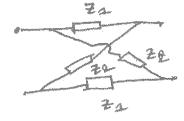
FACULTY OF ENGINEERING B.E. 2/4 (ECE) II Sem. (New) (Main) Examination, May/June 2012 NETWORKS AND TRANSMISSION LINES

Time: 3 Hours] [Max. Marks: 75

Note: Answer all questions from Part – A. Answer any five questions from Part – B.


	questions from Part – B.	
	PART-A 25 Ma	rks
·	Define image impedance and iterative impedance.	2
2.	Explain need of matching networks in detail.	2
3.	What are the advantages of m-derived filters? How you can choose m = 0.6 for terminating half sections?	3
4.	Find cut-off frequency of the filter section.	3
	20MH 20MH T 200Pf	
5.	What are the applications of equalizers?	2
6.	What are the inverse networks? Give examples.	3
7.	List the properties of positive real function.	2
8.	What are the limitations of single stub matching section?	3
9.	What is the condition for distortion less line? How this is achieved in practice?	3
10.	Show that for a filter $z_{OT} \times z_{OTT} = z_1 z_2$	2
	PART - B	rks
11.	a) Find the characteristic impedance and attenuation constant of the network show in Fig. below.	5

Code No.: 5431/N

b) Determine characteristic impedance and propagation constant for given lattice network.

12. a) Design L-type matching section to match 500 Ω to 400 Ω load.

5

b) Design A composite T-section 'LPF' with following specifications. R_0 = 600 Ω , f_c = 1000 kHz and f_{cc} = 1200 kHz.

5

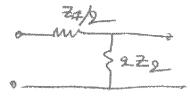
13. a) Design a unbalanced asymmetrical π -attenuator with a attenuation of 15 dB to operate between 400 Ω and 625 Ω line.

5

b) Derive the expression for $\cosh \gamma$, where γ is image transfer constant for standard symmetrical π -network.

5

14. a) Synthesize $y(s) = \frac{s(s+2)}{(s+1)(s+3)}$.


S

b) State and explain reactance theorem for LC NW.

5

15. a) Find image impedance z_{i1} and of L-network.

5

b) Synthesize the function $z(s) = \frac{s^2 + 2s + 6}{s + 3}$.

5

16. a) Define phase velocity and group velocity and establish relation between them in detail.

5 5

b) Derive an expression for input impedance of A finite length transmission line.

17. a) Explain the properties of Smith Chart.

3

b) A lossless line with $z_0 = 75~\Omega$ is terminates in an 7 M impedance Z_{R} = 115 - j80 Ω . The wavelength of the transmission is 2.5 metres. Using the Smith Chart, find:

a) Standing wave ratio

7.

- b) Max and Min line impedance
- c) Distance between the load and first voltage maximum.