FACULTY OF ENGINEERING

B.E. 2/4 (ECE) I-Semester (Main) Examination, November/December, 2009

Subject: BASIC CIRCUITS ANALYSIS

Time: 3 Hours]

[Max. Marks : 75

Note:

Answer all questions of Part-A. Answer five questions from Part-B.

PART - A

(25 Marks)

3

2

1. The equivalent circuit of a battery is shown in figure (1). Obtain the relationship between the current I and terminal voltage V. Find the power supplied by the battery to the load, in terms of I.

battery 0.02Ω V Load Figure 1

2. The current i (t) shown in figure (2) is applied to a capacitor of 2 mF from t = 0 onwards. Initially there is no voltage across the plates of the capacitor. Find the voltage across capacitor at t = 4 mS.

Contd...2

100180

3. Differentiate between zero-input response and zero-state response.

2

3

4. Find $\frac{di}{dt}$ (0) and $\frac{d^2i}{dt^2}$ (0) in the circuit of figure (3) if i_L (0⁻)=3 A and v_c (0⁻)=5V.

- 5. Define the terms: complex power, average power, reactive power, and apparent power. 2
- 6. Find the Thevenin's equivalent voltage between A and B of the circuit of figure (4).

- 7. A 10 μ F capacitor is in parallel with a practical inductor represented by L=1 m H and R=10 Ω . Find the resonant frequency of the parallel circuit.
- 8. Draw the pole-zero plot of the impedance Z(s) between terminals A and B of figure (5). 2

9. State Tellegen's theorem and explain its significance.

)

3

Contd...3

3

10.

In the figure (6), draw the graph of the circuit and show any two possible cut - sets.

PART - B

(50 Marks)

11. Using superposition theorem, find in the circuit of figure (7). Also find the powers supplied by the two voltage sources.

12. Find the current I in the circuit of figure (8) using nodal analysis.

10

13. Find $i_L(t)$ for $t \ge 0$ in the circuit of figure (9).

10

Contd...4

14. (a) In the circuit of figure (10), find the value of R_L which draws maximum power. 6 Calculate the value of the maximum power.

- (b) Define coupling co-efficient. Discuss dot convention for magnetically coupled 4 circuits.
- 15. (a) Find the total average power dissipated in the circuit of figure (11).

- (b) Define 'power factor' of an AC circuit. Discuss its significance.
- ---

3

16. (a) Find the band-width of a series RLC resonant circuit in terms of its quality factor 5 and resonant frequency.

Find the natural response v(t) if $v(0^-) = 10$ volts in the circuit of figure (12).

Contd...5

- 17. (a) Define
- (i) Cut sets and fundamental cut sets.

4

- (ii) Incidence matrix.
- (b) Draw the dual network for the network of figure (13).

6

- o 0 o -