

Time: Three Hours]

Code No. 3292

[Maximum Marks: 75

FACULTY OF ENGINEERING

B.E. 2/4 (CSE) First Semester (Suppl.) Examination, June/July 2011 DISCRETE STRUCTURES

Note: — Answer ALL questions from Part A. Answer any FIVE questions from Part B.

PART—A (Marks: 25)

		IANI—A (Mains . 23)	
1.	Defi	ne Converse, Contrapositive and Inverse of an Implication.	3
2.	Define Quantifiers.		2
3.	What is partial order relation?		2
4.	What is pigeonhole principle?		2
5.	Define semigroups and monoids.		
6.	What is inhomogeneous recurrence relation?		2
7.	What is complete Bipartite graph?		3
8.	What is algebraic system?		2
9.	What is composition of functions?		3
10.	Find chromatic number of a wheel graph.		3
PART—B (Marks : 50)			
11.	(a)	Show that $P \to (Q \to P) \Leftrightarrow \exists P \to (P \to Q)$.	4
	(b)	Show that $Q \vee (P \wedge \neg Q) \wedge (\neg P \wedge \neg Q)$ is a tautology.	6
12.	(a)	On the set Z, define the relation R by aRb if and only if $ab \ge 0$. Prove that R is reflex and symmetric, but not transitive.	kive 5
	(b)	Consider the functions f and g defined by $f(x) = x^3$, $g(x) = x^2 + 1$, $\forall x \in \mathbb{R}$. Find g f o g, f^2 and g^2 .	o f, 5

HVS---797

(Contd.)

13. (a) State and explain the properties of the pigeonhole principle.

- 5
- (b) Find the number of derangements of the integers from 1 to 10 inclusive, satisfying the condition that the set of elements in a first-5 places, is:

- (i) 1, 2, 3, 4, 5 in some order
- (ii) 6, 7, 8, 9, 10 in some order.

5

6

- 14. (a) Solve the recurrence relation $a_r = 3a_{r-1} + 2$, $r \ge 1$, $a_0 = 1$ using generating function.
 - (b) Solve the recurrence relation $a_n 9a_{n-1} + 26a_{n-2} 24a_{n-3} = 0$ for $n \ge 3$ with $a_0 = 0$, $a_1 = 1$, $a_2 = 10$.
- 15. (a) If G is a group such that $(ab)^m = a^m b^m$ for three consecutive integers m for all a, $b \in G$, show that G is abelian.
 - (b) Let G be a group and H a subgroup of G. Let f be an automorphism of G and $f(H) = \{f(h) \mid h \in H\}$. Prove that f(H) is a subgroup of G.
- 16. (a) Use Kruskal's algorithm to find minimum spanning tree:

- (b) Define the following graphs with an example each:
 - (i) Complement graph
 - (ii) Subgraph
 - (iii) Spanning subgraph.

4

17. (a) Prove that a complete graph K_n is planar iff $n \le 4$.

- 5
- (b) Write a brief note about the basic rules for constructing Hamiltonian cycles.

5

HVS--797

2

900