VASAVILIBBAR

Code No.: 3052

FACULTY OF ENGINEERING B.E. 3/4 (Prod.) I Semester (Main) Examination, December 2010 MACHINE TOOL ENGINEERING

Time: 3 Hours]

[Max. Marks: 75

Note: Answer all questions from Part - A, Answer any five questions from Part - B.

PART – A	(25 Marks)
1. What is tool signature?	2
2. Indicate the heat generation zones in an orthogonal metal cutting	process. 2
3. Mention the ISO tool wear criteria.	2
4. Differentiate thread rolling and thread cutting operations.	2
5. What is a multi-spindle automat?	3
6. How the shaping time is evaluated?	
7. Sketch 'Profile' and 'Double angular' milling cutters.	3
8. What are 'Counter sinking' and 'Counter boring' operations?	3
9. How an abrasive wheel is specified?	3
10. Define 'Grinding Ratio'.	2

Code No.: 3052

PART – B (50 Marks)

11. a) Discuss the effect of rake angle on metal cutting and chip formation. Where and why negative rakes are used?	6
b) Mention salient features in the design of multipoint cutting tools.	4
12. a) Explain the occurrence of 'shear zone' in metal cutting. Which cutting parameters do control shear zone?	6
b) Discuss the effect of tool wear on machining and machined surface.	4
13. a) With an example explain how tool layout is prepared on a turret lathe.	5
b) Calculate the metal removal rate for turning a 60 mm diameter bar at 190 rpm with 0.2 mm/rev. of feed and 2 mm depth of cut.	5
14. a) With a neat sketch explain the principle of one of the quick return mechanisms in a planer.	6
b) How Gears are shaped?	4
15. a) Sketch a vertical milling machine showing all the mechanisms. How the job is held on the work table of this machine?	6
b) Explain the process of Gear Hobbing.	Â.
16. a) Compare shaping, planning and slotting operations with regard to toolwork motion, types of jobs, applications, etc.	6
b) How a grinding wheel is selected?	
17. a) Describe 'on - center' and 'off - centre' internal centreless grinding processes.	6
b) How grinding wheels are manufactured?	4

700