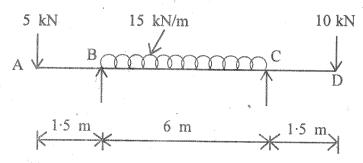
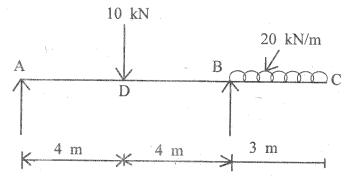
WASAVI LIBRARS

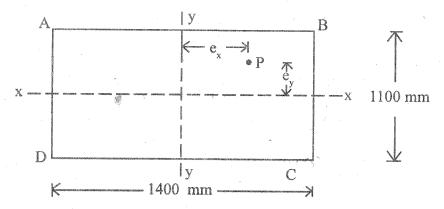
Code No. 3284


FACULTY OF ENGINEERING

B.E. 2/4 (M/P/AE) First Semester (Suppl.) Examination, June/July 2011 MECHANICS OF MATERIALS

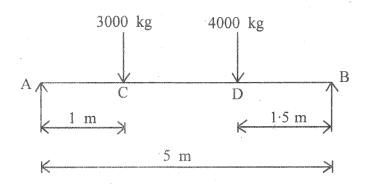

Tim	ne: Three Hours] [Maximum Mar	rks: 75
r	Note: Answer ALL questions from Part A. Answer any FIVE questions from Pa	urt B.
	PART—A (Marks: 25)	
1.	Differentiate between strength and stiffness.	3
2.	Write three basic assumptions made in simple theory of bending.	3
3.	When a shaft of diameter d is subjected to bending moment M and a torque T, the equatorque is given by	uivalent 3
4.	At a certain point in an elastic material, normal stress of 128 MN/m² (tension 100 MN/m² (Compression) are acting on planes at right angles to each other. What maximum shear stress in the material if it is subjected to major principal standard MN/m²?	at is the
5.	What are Lame's constants? Explain briefly.	3
6.	For what angle θ , will the normal stress be maximum?	. 2
7.	In the case of T-section, the maximum bending stress will occur at (a) Neutr (b) extreme fibre in the range (c) extreme fibre in the web (d) junction of web and	
8.	Write the relation between shear force, bending moment and rate of loading.	2
9.	Define terms Ductility and Malleability.	2
10.	Write secant formula for eccentrically loaded column.	2
	PART—B (Marks: 50)	
, k	(a) Derive the relationship between modulus of elasticity (E) and bulk modulus ((K). 7
	(b) Draw stress strain curve for a mold steel subjected to tension test. Indicate salien therein.	nt point
HVS	3-811	(Contd.)

Market Walker


12. Draw BMD and SFD for the following overhanging beam indicating values at salient points.

13. Determine slope and deflection at D and C for the overhanging beam shown below: 10

- 14. The cross-section of Joist is a T-section 80 mm × 130 mm × 10 mm with the 80 mm side horizontal. Find the maximum intensity of shear stress and sketch the distribution of stress across the section if it has to resist a shear force of 6 tonnes.
- 15. A rectangular column is subjected to a compressive load of 550 kN as shown in figure. Find the stress intensities at four corners of the column. P is the point of application of load and $e_x = 250$ mm, $e_y = 250$ mm.



HVS-811

2

(Contd.)

16. Find the position and amount of Maximum deflection in the below shown beam. $I_x = 7332 \text{ cm}^4$, $E_x = 2 \times 10^6 \text{ kg/cm}^2$.

17. (a) At a certain cross section of a shaft 100 mm in diameter there is a bending moment of 5000 kN-mm and twisting moment of 7500 kN-mm. Calculate the maximum direct stress induced in the section and specify the position of plane on which it acts. 8

3

(b) Differentiate between close coiled and laminated springs.

HVS---811

2