

Code No.: 6359/N

FACULTY OF INFORMATICS

B.E. 3/4 (IT) II Semester (New) (Supple.) Examination, December 2009 DESIGN AND ANALYSIS OF ALGORITHMS

Time: 3 Hours

[Max. Marks: 75

Note: Answer all questions from Part A. Answer any five question from Part B.

	PART – A (25 Marl	ks)
1.	Define Heap.	2
2.	What is binary search?	2
3.	Define minimum spanning tree.	2
4.	Define optimal solution.	2
5.	State travelling salespersons problem.	3
6.	What is multistage graph?	3
7.	Write the control abstraction for LC-search.	3
8.	Define biconnected component.	3
9.	Mention any two applications of Depth First Search.	2
10.	What is decision problem?	3
	$PART - B (5 \times 10 = 50 Mar)$	ks)
11.	a) What is an algorithm? Explain time and space complexity of an algorithm.	5
	b) Write about Asymptotic Notation.	5
12.	a) What is divide and conquer? Give the control abstraction.	5
	b) Give the algorithm for merge sort using divide and conquer.	5
13.	Briefly argue how principle of a optimality holds for $0/1$ knapsack problem, generate the sets. S^i , $0 \le i \le 4$. Where $(w_1, w_2, w_3, w_4) = (10, 15, 6, 9)$ and $(p_1, p_2, p_3, p_4) = (2, 5, 8, 9)$ – State the purging rules used. If Knapsack capacity is $m = 25$, what is optimal solution?	10

Code No.: 6359/N

14. a)	Write an algorithm for graph coloring problem?		5
b	Write a recursive backtracking algorithm to find all the Hamiltonian	n cycles	
F r	of a given graph.		5
15. a)	Write UNION and FIND algorithm.		5
b)	Explain FIFO branch and bound.		5
16. a)	Discuss in detail about the problem of job sequencing with dead li	nes.	4
b)	Write algorithm for finding minimum spanning tree of a digraph and it with an example.	d explain	6
17. W	rite short notes on:		U
a)	Amortized complexity.		
b)	Reliability design.		
c)	Node covering problem.		

(#FE

1.8