

Code No.: 5140/O

FACULTY OF ENGINEERING BE 2/4 (ECE) II Semester (Old) Examination, May/June 2012 PULSE, DIGITAL AND SWITCHING CIRCUITS

Time: 3 Hours] [Max. Marks: 75

Note: Answer **all** questions of Part **A**. Answer **five** questions from Part **B**.

PART – A (25 Marks	*		
	in.		
Sketch a pulse voltage response of a High Pass RC circuit.	2		
2. Prove that a Low Pass RC circuit can function as an integrator.	3		
3. Match the following:	2		
A B			
a) As table multivibrator i) FLIP – FLOP			
b) Bistable multivibrator ii) Generation of square wave			
c) Monostable multivibrator iii) Free running M.V.			
d) Schmitt trigger iv) One shot M.V.			
v) D.C. Restorer			
4. Draw the circuit of a Relaxation oscillator.	3		
5. Determine the canonical SOP representation of the function $f(x, y, z) = z +$			
	3		
6. Simplify the following algebraic expression $f(w, x, y, z) = xy + wxy \overline{z} + \overline{x}y$	2		
7. Distinguish between Prime implicantes and essential prime implicants.	3		

Code No.: 5140/O

2

8. Express T as a function of A, B, C, D. AND or gate AND

- 3

Ç	Э. C	Convert a JK to T flipflop.	0
10). V	Write the difference between combinational circuit and sequential circuit.	3
	ě	DADT	50 Marks)
11	. a	a) Compare clippers and clampers.	
		 Derive a condition for a perfect attenuation in a compensated attenuator. 	5
12	a	 Explain the schmitt trigger circuit with the help of circuit diagram and tra characteristic. 	nsfer
	b)) What are the application of schmitt trigger ?	7
10			3
13.	f(/	finimize the function using Tabular method. A, B, C, D) = Σ m(2, 4, 6, 8, 9, 10, 12, 13, 15)	10
14.	. a)	Explain Hazard in digital circuit with example.	4
	b)	 Determine which of the following function is symmetric and identify its a nur and variables of symmetry. a) f₁(A, B, C, D) = Σm(3, 7, 14) b) f₂(A, B, C, D) = Σ m(0, 1, 3, 5, 8, 10, 11, 12, 13, 15) 	mber 3
15.	a)	Write the differences between synchronous and asynchronus counter.	
	b)	Design a modulo-8 asynchronous up counter using JK flipflop. Draw the ouwave form.	
16.	a)	Write the Truth Table of full adder.	7
			3
	- /	Design a code converter which converts BCD to Excess-3 code.	7

17. Write short notes on any two:a) Transistor as a switch.

b) Astable multivibrator. 5 5 c) SCR. 5