Code No. 5420 / N

FACULTY OF ENGINEERING

B.E. 2/4 (ECE) II - Semester (New) (Main) Examination, May 2016 Subject : Probability Theory and Stochastic Processes

Time: 3 hours Max. Marks: 75

Note: Answer all questions from Part-A. Answer any FIVE questions from Part-B.

PART - A (25 Marks)

1 2 3 4	Sta De	State the fundamental Axioms of Probability. State Bernoulli's theorem. Define Cumulative Distribution Function (CDF) and state its properties.								
5	A pair of dice is rolled. Find the probability of an event A defined as A = {sum of two dice = 7}. What is a Gaussian Random variable?									
6 7 8 9 1 0	If X is a discrete random variable, define the expectation of the random variable and the variance of the random variable. Define the moment generating function of a continuous random variable X. State the Central Limit theorem. Define Autocorrelation function of a random process and state its properties. Define White Noise.									
		PART – B (50 Marks)								
11		State and prove the theorem of Total Probability. Manufacturer X produces personal computers (PCs) at two different locations in the world. Fifteen percent of PCs produced at location A are delivered defective to a retail outlet, while 5 percent of PCs produced at location B are delivered defective to the same retail store. If the manufacturing plant at A produces 1,00,000 PCs per year and the plant at B produces 1,50,000 PCs per year, find	5							
		the probability of purchasing a defective PC.	5							
12		Define probability density function (PDF) and state its properties. Determine the real constant 'a' for arbitrary real constants m and $b > 0$, such that $f_{x}(x) = a e^{- x-m /b }$ is a valid density function.	4 6							
40			O							
13	the	t X be a Gaussian random variable with zero mean and variance σ^2 . If Y = X ² is transformation. Find the new density function $f_Y(y)$.	10							
14	a)	If X has the probability density function $f_x(x) = \begin{cases} e^{-x} & x > 0 \\ 0 & \text{elsewhere} \end{cases}$ find the $E\left[e^{\frac{3x}{4}}\right]$.	5							
	b)	Find the density function of a random variable whose characteristic function is given by $\phi_x(\omega) = \frac{1}{2}e^{-\omega_i} - \infty \le \omega \le \infty$.	5							

http://www.osmaniaonline.com

Code No. 5420 / N

6

- 2 -

15 a)	Define joint density function $f_{XY}(x, y)$ and write down the expression for getting the marginal density functions of X and Y using the joint density function $f_{XY}(x, y)$.													
b)	Suppose			variables	Χ	and	Υ	have	а	joint	pdf	given	by	4

 $f_{xy}(x,y) = \begin{cases} 0 \text{ otherwise} \end{cases}$ Find the marginal pdfs $f_X(x)$ and $f_Y(y)$ and check whether the random X and Y are statistically independent.

- 16 Suppose X and Y are statistically independent random variables, having PDFs given by $f_X(x) = a \exp(-ax)u(x)$ and $f_Y(y) = b \exp(-by)u(y)$ then find the PDF of a new random variable given by Z = X+Y. 10
- 17 Consider a random process $X(t) = a \cos(w_0 t + \theta)$ where θ is a uniform random variable in the interval $[0, 2\pi)$.
 - a) Check whether the random process is wide sense stationary.

http://www.osmaniaonline.com

5 b) Check whether the random process is ergodic in mean and autocorrelation. 5

http://www.osmaniaonline.com Whatsapp @ 9300930012 Your old paper & get 10/-पुराने पेपर्स भैजे और 10 रुपये पार्य, Paytm or Google Pay स