

Code No.: 5341/N

FACULTY OF ENGINEERING B.E. 2/4 (CSE) I Semester (New) (Main) Examination, Dec. 2011 DISCRETE STRUCTURES

Time: 3 Hours]

[Max. Marks: 75

Note: Answer all questions from Part A. Answer any five questions from Part B.

	PART – A (25 Mar	ks)
1.	Write the Logical equivalent to the following statement:	2
	$\sim (p \land q) \rightarrow (\sim p \lor (\sim p \lor q))$	
2.	Define the rule of universal specialization? Give one example.	2
3.	Among 'n' pigeon holes, some pigeon holes should contain atleast 3 pigeons. Find the number of pigeons.	2
A		^
4.	How many reflexive relations are there on a set with 8 elements.	2
5.	Write a relation R, which should be a Bijective function on the given set A = {1, 2, 3, 4}.	2
6.	What is an order of a group ? Explain with example.	3
7.	What is the dearrangement for 1, 2, 3, 4, 5.	3
8.	Write the solution for the recurrence relation	3
	$a_n - 6_{a_{n-1}} + 9_{a_{n-2}} = 3^n$	
9.	Define wheel graph? When a wheel graph with n-vertices becomes regular? Give one	
	example to support your answer.	3
10.	What is graph traversible ? If $V(G) = \{A, B, C, D\}$; Determine the traversible Edgeset $E(G)$	3

Code No.: 5341/N

PART - B

(50 Marks)

11. a) Show that $[(p \lor q) \to r] \leftrightarrow [\neg r \to \neg (p \lor q)]$ is tautology?

5

b) Prove: $p \rightarrow (q \rightarrow r)$ $p \rightarrow p$ p

using rules of Inferences.

5

12. a) Prove that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Λ

b) Let f: R \rightarrow R, be defined by f(x) = $\begin{cases} 3x - 5; x > 0 \\ -3x + 1; x \le 0 \end{cases}$, then

determine:

- 1) f(-1), f(5/3), and f(-5/3)
- 2) $f^{-1}(0)$, $f^{-1}(-6)$, $f^{-1}(1)$.

6

13. a) List and explain the properties of Binary relations with example.

A

b) Let $A = \{1, 2, 3, 4, 5\} \times \{1, 2, 3, 4, 5\}$ and R is defined on A by $(x_1, y_1) R (x_2, y_2)$ if $x_1 + y_1 = x_2 + y_2$; verify that R is an equivalence relation on A.

6

14. Prove that $F_n = F_{n-1} + F_{n-2}$ is the Fibonacci relation for $n \ge 2$, then there are constants c_1 and c_2 such that

 $F_n = c_1 \left(\frac{1+\sqrt{5}}{2}\right)^n + c_2 \left(\frac{1-\sqrt{5}}{2}\right)^n$

10

15. a) Find the coefficient of x^{15} in $(1+x)^4/(1-x)^4$.

6

b) Write short note on group code and its applications.

4

Code No.: 5341/N

16. a) For the Algebraic system $\langle zm, * \rangle$, let m = 3; $m_1 = 2$; $m_2 = 3$; $m_3 = 5$. Find the number whose residue representation is $\langle 1, 1, 4 \rangle$

5

b) Draw and explain the BFS and DFS algorithms for the following graph:

5

17. a) What is isomorphic graph? Explain various conditions for proving the given graphs is not isomorphic.

4

b) Check the following graphs are isomorphic or not.

6

y X

(G)

(G')